The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble

نویسندگان

  • Savas Tasoglu
  • Utkan Demirci
  • Metin Muradoglu
چکیده

The effect of soluble surfactants on the unsteady motion and deformation of a bubble rising in an otherwise quiescent liquid contained in an axisymmetric tube is computationally studied by using a finite-difference/front-tracking method. The unsteady incompressible flow equations are solved fully coupled with the evolution equations of bulk and interfacial surfactant concentrations. The surface tension is related to the interfacial surfactant concentration by a nonlinear equation of state. The nearly spherical, ellipsoidal, and dimpled ellipsoidal-cap regimes of bubble motion are examined. It is found that the surfactant generally reduces the terminal velocity of the bubble but this reduction is most pronounced in the nearly spherical regime in which the bubble behaves similar to a solid sphere and its terminal velocity approaches that of an equivalent solid sphere. Effects of the elasticity number and the bulk and interfacial Peclet numbers are examined in the spherical and ellipsoidal regimes. It is found that the surface flow and interfacial surfactant concentration profiles exhibit the formation of a stagnant cap at the trailing end of the bubble in the ellipsoidal regime at low elasticity and high interfacial Peclet numbers. Bubble deformation is first reduced due to rigidifying effect of the surfactant but is then amplified when the elasticity number exceeds a critical value due to overall reduction in the surface tension. © 2008 American Institute of Physics. DOI: 10.1063/1.2912441

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil

A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...

متن کامل

Numerical Study of Bubble Separation and Motion Using Lattice Boltzmann Method

In present paper acombination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble and effect of wetting properties of the surface on bubble separation. By combining these models, three-dimensional model has been used in two-dimension for decreasing the computational cost. Firstly, it has been ensured that th...

متن کامل

Buoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle

Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...

متن کامل

Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel.

We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole...

متن کامل

Effect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin

This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008